Extension: [7,7,1] to [20,7,4] Number of the matrices for extension:1 {self-orthogonal no} Number of ones to add in the first row in the generator matrix of the codes: 3 Weights: 4 8 12 16 20 Maximal number for proportional coordinates in the output codes:Till dimension 1--20; Till dimension 2--20; Till dimension 3--20; Till dimension 4--20; Till dimension 5--20; Till dimension 6--20; Till dimension 7--20; The minimum distance of the dual codes is: 2 ======================== Start matrix 1 21 E 111000000000010000001 000000000000001000002 000000000000000100003 000000000000000010004 000000000000000001005 000000000000000000106 000000000000000000017 ?7 20 4 _7 1 11100000000001000000 12333333333000100000 12312333333000010000 23100222333330001000 23100222333120000100 00000000123000000010 00000123000000000001 AUT: 89579520 $1z^{0}+15z^{4}+90z^{8}+4110z^{12}+11925z^{16}+243z^{20} dd-3$\\ ?7 20 4 _7 2 11100000000001000000 12333330000000100000 12312330000000010000 12300303330000001000 12300301230000000100 12300300003330000010 00000000001230000001 AUT: 2985984 $1z^{0}+12z^{4}+342z^{8}+3372z^{12}+12657z^{16} dd-3$\\ ?7 20 4 _7 3 11100000000001000000 12333330000000100000 12312330000000010000 12300303330000001000 12300301230000000100 00000000003330000010 00000000001230000001 AUT: 22394880 $1z^{0}+24z^{4}+306z^{8}+3408z^{12}+12645z^{16} dd-3$\\ ?7 20 4 _7 4 11100000000001000000 12333330000000100000 12312330000000010000 00000003330000001000 00000001230000000100 00000000003330000010 00000000001230000001 AUT: 447897600 $1z^{0}+36z^{4}+462z^{8}+3060z^{12}+12825z^{16} dd-2$\\ DIFFERENT ENUMERATORS :4 ALL CODES: 4 1 1 AUT: 89579520 $1z^{0}+15z^{4}+90z^{8}+4110z^{12}+11925z^{16}+243z^{20} dd-3$\\ 2 1 AUT: 2985984 $1z^{0}+12z^{4}+342z^{8}+3372z^{12}+12657z^{16} dd-3$\\ 3 1 AUT: 22394880 $1z^{0}+24z^{4}+306z^{8}+3408z^{12}+12645z^{16} dd-3$\\ 4 1 AUT: 447897600 $1z^{0}+36z^{4}+462z^{8}+3060z^{12}+12825z^{16} dd-2$\\